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Electron Density of States in High Temperature
Superconductors
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ABSTRACT

The evaluation of one electron thermodynamic Green’s functions using the equation of motion technique of quantum dynamics via newly formulated Hamiltonian and
using Dyson’s equation approach. This involves approximation free approach and different cooper pairs are emerged automatically in the system and stands as an
ab-initio approach. The detailed description of enhancement in the electron density of states (EDOS) for high temperature superconductors has been investigated.
The investigated expressions of EDOS in the new framework are found responsible to describe a large number of dynamical properties of high temperature
superconductors. The temperature dependence of EDOS has been found as a unique feature of the theory, which certainly becomes the outcome of the anharmonic

interactions. The presence of electron-phonon interaction parameter in each term is an additional and new feature of the theory.

Index terms .- Anharmonicity, Cooper pairs, Electron Density of States, Green’s function, Hamiltonian, Superconductors.

1 Introduction

Usually the potential energy of a crystal is expanded in

terms of a Taylor series of nuclear displacements about their
equilibrium positions. In this series the quadratic terms are
known as the harmonic terms which yield the well known
harmonic approximation and the rest containing higher-order
(cubic-, quartic-, etc.) terms describe the anharmonic
approximation [1]. The harmonic approximation however
suffers from the problem of adjustable parameters could
successfully explain a large number of physical properties but
could not explain successfully many other physical properties
of the crystals, such as the thermal expansion, thermal
conductivity, infrared absorption, Raman scattering etc.

The harmonic approximation which treats the normal
modes (exact eigen state of Schrodinger equation describing
them infinitely long lived) as independent is an excellent
approximation. If one includes the contribution of higher
order terms in the expansion of energy, the Schrodinger
equation does not offer any exact eigen state and the modes
becomes short lived due to interaction of phonons and other
excitations making the problem as many body problem.

In the early stage of development of many-body theory,
it was extensively studied on the basis of perturbation theory
[2-12]. Things now become much complicated but solved the
problems amicably [13, 14]. Many of the more developments
have occurred in treating the dynamical properties and have
been studied with the use of the techniques of double-time
thermodynamic Green functions [15, 16]: using the equation-
of-motion technique of quantum dynamics, diagrammatic
perturbation theory and functional derivatives [17, 18].
Further, the effect of anharmonicities does not vanish even at
the Lowest of temperature [19].
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Many refinements were incorporated in the theory of
double-time temperature dependent Green'’s function applied
to many body theory made it a very powerful method in
solving many problems of condensed matter physics [20, 21].
The effects of anharmonicity on electrons and phonons make
it a novel problem with immense academic interest for
physicists due to: (a) harmonic crystals is an ideal situation
which cannot be achieved in general and in case of high
temperature superconductors, it is impossible due to the
increased number of atoms per unit cell, which in turn,
increases the possibility of interaction of particles and other
energy excitations, thus, overruling the possibility of non-
interacting modes with infinite lifetime; (b) the influence of
anharmonicities does not vanish even at the absolute zero
temperature: and (c) the impurity induction and the
probability of invoking impurity modes and interference
modes is very high in the T. superconductors. The
involvements of anharmonic and impurity effects reveal
drastic changes in the EDOS. The development of the theory
includes a general and newly formulated Hamiltonian which
involves the contribution due to the unperturbed phonons-,
unperturbed  electrons-,  electrons and  phonons-,
anharmonicity-, and defects (mass and force constant
charges) [22]. Now the renormalized mode electron energy
expressions are separated in terms of anharmonic, defect,
interference  thereof and electron phonon-coupling
interactions. These quantities show strong dependence on
temperature via Fermi and Planck’s distribution functions.
The low and high temperature limits EDOS have been
investigated in the hydrodynamic and low temperature
regimes.

2 Formulation
The electron density of states(EDOS) in the Lehman
representation can be written as [23,24]

Nepy (€) = =2 IMG)(q, ) M
a
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where G (], €) is the one electron Green'’s function, € and

q stand for the electron energy and electron wave vector,
respectively.

3 The Hamiltonian

We consider a three-dimensional Bravais crystal with
volume V containing N atoms such that, n lattice sites are
occupied by the randomly distributed substitutional impurity
atoms, each of massM ', while the rest (N — n)lattice sites

are filled by the host atoms, each of mass M . The number of
impurity atomsNis very less in comparison to the host
atoms[n << (N —n)], so that for a low impurity
concentration (C = N/ N)the impurity-impurity interaction
would be ignored [25]. The introduction of impurities greatly
modifies the force constants between host and impurity
atoms along with the change of mass. In the present work the
theory is restricted to the nearest neighbor force constants.
The almost complete Hamiltonian of such a system can be
written as

H=H,+H,+H,+H +Hp 2)
where H 0 is the unperturbed phonon Hamiltonian [26-28],
H, is the unperturbed electron Hamiltonian [29,30], H, is

the electron-phonon Hamiltonian [31-33], H, is the
anharmonic Hamiltonian [34-36] and Hp is the defect

Hamiltonian [25,36-39] arising due to the substitutional
impurities respectively, which is given by

H =2—[AkAk +ByBy] (2a)

Zeq 4Pq> (2b)
ep = zgkabq By, (20)
kg
Ha=> D Volki Ko k)A A, A (2d)
$23K,,..Kq
And
Hp = Z[D(kllkZ)AklAkz —C(ky kp)By B, 1 (20)
kK,

In above expressions A, =a, + aik = +Ajk (phonon field
operator) and B, =a, — afk = —Bjk (phonon momentum
operator), by (bg )anda, (a,) are electron and phonon

annihilation (creation) operators with wave vectors (and

K respectively. For brevity and simplicity the subscripts have
been redefined as (o =(QandQoc=Qfor electron
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andKk(=Kj)for phonon respectively, andQ=Kk+(.
€€ Ok VoK Ky k), C(K,K,) and D(K,,k,)
stand for the electron energy, phonon energy and electron-
phonon coupling coefficient, anharmonic coefficients, mass

difference and force constant change parameters, respectively
[25-37].

4 Electron Green'’s function
Let us consider the double-time thermodynamic electron
retarded Green'’s functions

Gy (t,1") = ((by, (1); by (1))
=—i0(t-t") <[by, b, 1> (3)

In above Eq.(3), o defines the spin and T (¥) designates the

spin up (down) for electrons.
With the help of equation of motion technique of quantum
dynamics via Hamiltonian (2) in the form [36]

s ()_ (3€N+€ )5q oo’
e _{272'[6 —EQO' +3eN +€%)P(g,9)1}

)

~2 (_=2\ . . . .
where €;, (=€) is the renormalized energy, which is equal

to
er=(8e" +ec)2—§—
I
(3€—+2(9k gk)_ 5)
and
(R p———r () TN ) S

2r(3e” +€°%)

where €Cis the energy of cooper pair. In Eq.(4) the delta
function SqG acquires a large number of momentum and spin

combinations, namelyé‘qTé‘qT, 5qT5q¢' 5ql«5qT’ 5q¢5q¢,
5_(”5(”, 5_(”5(”, 5_q¢5q1~, 5_q¢5q¢. During the above
development it is surprisingly found that the cooper pair

energy €® as well as the normal electron energyeN
automatically emerges out in the results. The solution of

function P(Q,€) can be obtained after decoupling of the
developed  Green’s functions from the Green’s
function (( Fq*g (t); Fyor ('), with the help of electron and

phonon renormalized Hamiltonians
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H fente) = Z(EqT brPyr+ €qy Paybgy+ € gp DIgpb_gp € gy bZgyb ) 7)
=
r(grz(p) —Z[ kAkAk+ek Bk By ] 8
As
P(a.9) ZGZ 8! 2¢€’ Noo N eln, . 4e, n, - 4
€)= ' - — - -
a g K €, (36 +e%)?)er-¢ | @Be" +e%)? 3eM +€° “ e—-(3e" +€%)
+1282 D(k, —k)D(-k k) + D(k, —K)D(k,; k")t !
g g € g Vo e—(BEN +E°) |(BeM +€°)?
~ s =
+288 |V, (K, K, ,—k)V; (K, K, — k) e Sie L O Sa N,
ky.k2 €+a € _e—a
Ny, Ny 1
+Vy (ky, Ky =k )V (K, Ky =k =
3( 1172 ) 3( 172 )( —(3EN +€C)]:| (3€N +€C)2
5 € S , €
+1536 D |V, (K, Ky, Ky —K)V, (=K ,—k, kK, k) f +3—2—2 N,
kg k2 k3 e’ Cip € —€,
, 3n, N, Ny 1
+V4(k1,k2,k3,—k)V4(k1,k2,k3,—k ){e _(3l-éN2+ E;é—c)]:l (3€N 4 Ec)z ©)
where
n, =(AA)Y;n, =(AB);n, =(B,B,) (9a) S[e —(3e™ +€®)]function. This cannot be normally
Gk o = (gk + gk)(gk' + gk ) (9b) solved With usual process. Hence, here we can write above
- expressions as (to the reasonable degree of accuracy and
Em—ek + Ek ,e+ﬂ—ek * Ek 1 &, (%0) without violating physical lows)
Sip =My, _nkl;Siﬂ =ltn g +n N 0 (9d) N, = +j orict) 1 1 5(e -3eM) 5(e € ) de 0
2 “+1 ef-1
m ZQ; 2 = m (96) or
Noo 27| - | a=0) an
and 2| e%< 11 efc -1
+0 _—ie(t-t)) ) :
NQO- _ j e — e —(3 =N .E.C)]d e ©h The electron-phonon energy shifts A(ep) (q,€) are the
<, €75

The value of N Qo is including through the cooper pairs and

normal electron problem via

principal value of P(Q,€). The shift A (d,€)and line

width g (0, €) can be separated in three terms, such as

8 &2 x=N N en 4e, n ~ 1
AEP €)=4 G2 J|— k Qo + k "k . LS S - -
() g’ k’k{ ) (3eN+eC)2Lz—'éf |:(3EN+EC)2 (3N +&°%) kj|e—(3eN+eC)}
(12)
n 1
1285 G2, D(k,,—k) D(~k,,—k 7 + D(k,,~k)D(k,,~k 4
(ep)(q E) Z { (1 ) ( 1 ) kl (1 ) (1 ){ —(36 L =C )}}(36“‘4—60)2
kkl
(13)
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3A
A(ep)

’ S+a E+a S—a E—a
(q1€) = 288K;Gk2,k’ V3(k11k2!_k)v3 (_kl’_k21_k )nlNQJ|:€2 . Eix + (62 _ -éza)j|
kq ko
N, Ny 1

+V, (kg Ky, =KV, (K, k=K' =

(ks ke —HVa (ks )[e—(3eN+eC)}(3€N+ec)2
2 ’ S+/3 Eﬁi’ S*ﬂ E*ﬂ
(q,e) =1536 ZGk,k'[V4(k1’kz’ksi_k)v4(_k1’_k2’_k3’_k) Ez . EZ +3€2 EZ nzNQa
ks o’ 7
3n,.n._n
+V4(k1’k21k3’_k)v4(k1’kzvkz’_k') kl~,52 kic L (15)
e—(3e” +€7)

In above Egs.(12), (13), (14)and (15), the second term of each part of defect-, anharmonic- and phonon-electron terms shows the
renormalize cooper pair and normal energy which denoted by € and €
[(ep) (0, €) can be written as

4A
A(ep)

(14)

(BeM +&°)?

1_‘(ep) (q’e) = FEP (q1€) +FD

respectively. Now, the electron line width

(en) (p) (@,€)+ r(?;/;) (@,€)+ r(i?) (,€) (16)
where
8 &’ 28 -
F(EFF;) (q,E) = 4”§Gk2,k'{§(€)|:_ Ekk + (3 EN +kEC)2 :|NQ65(€2 — eIf)
Y B . 1NV P A P L 17)
Be" +€%)?* (Be" +€%) “
INCOE 128”ZGI<2M{§(G)D(kl’_k)D(_kli_kI) €, No,0(e® - &)
lIi;.kkl
, ~ ~ 1
+ D(kl,—k)D(kl,—k )nkl5[e —(3 EN + EC)]}M (18)
1—‘(3es) (q,€) = 2887 Zsz,k'{Vs (k;, ky =KV (=K, =k, '_k’)‘f(e)nlNQa [S.. é+a5(€2 - éza)
o
+S €, 5(62 - Efa N+V,(k, Kk, —k)V, (K, k,,—k)n, n,. S[e —(3 eN + EC)]}% 29)
L Be” +€7)
F(iﬁ) (q,€) =15367 Zsz,k’{VA (k1v kz ' ks ,—k)V4 (_k11_k2 v_ks v_kl)ég(e)ﬂz NQo‘
KKKy,
k2.k3

x[S,; €4 S5(e? - Efﬂ)JrSS_ﬁ €4 S5(e? - Efﬁ)]

+3V, (k.. K, ks, =KV, (K, K,, k3,—k’)nklnk2nk35[e ~BEN +E)}
5 Electron Density of States (EDOS)

(20)
Now, the imaginary part of G (q, €) is given by
3eN +&%%5 .6 T €
G® (q,e) = 2( —— ) Slq O'O'C (zep) (9,€) _ 1)
©rl(e” - &) +(Be” +e7) [Iep (.91 1}
where the energy of perturbed mode is given by
€/=€; +(3€" +€°)A(qg,€) (22)

Using Eq.(21) in (1), we obtain the EDOS as
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3 eV + ec)zl"e (9,€)
Nep) (€) = e

(23)
27l(€® - €)* +Be" + %) [T, (@. 91}
this can be reasonably approximated for small value of line width in the form
: BeN +e%) Ty (a9
N (€)=Y Nl (€)= s (24)
(ep) Z (ep) ZI: [272'(62 _ Eq2)2]
i=EP,3A4Aand D
The various contributions to the EDOS can be summarized as:
1
(ep)(E) ZQ ZG {[ 4 Gk (36 + e ) + e Ek]@NQU
k q
2
{E Y 12e, (Be" + €O, +2(3e" +e°)? nJ (36 +er)’ (25)
2 JIBe" +e°)*-</]
N~ 1
N ep) (€) = 32, ZGf,k{[D(kl,—k)D(—kl,—k ) €€y ]H Nos
k' kg K a
(36 +E°)?
+D(k,,—k)D(k,,—k")n 26
(1 )(1 )kl[(3 +€C)—Eq]2 ( )
i S+a Efa
(ep)(e) =72Q), ZG V,(ky, k, =KV, (=K, =k, ,—k") m
k1 k2 +a q
= o (38" +'é°)2
ﬁ}m'\'qa +V3(ky, K,y =KV, (K, K, =k ‘(3~N 1202 7 M Ny (27)
NS, El
(ep)(e) 384Q ZG V4(k1,k2,k3,—k)V4(—k1,—k2,—k3,—k) =2 282
(€+/3 - Eq )
Ky, k2 k3
S_, €’ NN N (3" +e%)°
3"; o Vo (ky Ky kg =KV, (K K, Ky~ )32 -2 28
(e )}772 (ky, Ky kg, =KV, (ky, K, Ky ) [(36 +e)2_€qz] (28)

6 Density of States for Superconductors

When in the close vicinity of T. the superconductivity increases so that the cooper pairs dominate over normal pairs. In this
case (€°>>e")and thus,

N (,C) =20, 5 Gy, {;{ Mﬂ:gkk@){l_[’éz (k,C)+Ek]}

€, eC)4 (EC)Z

L N {HZ[(E )+ (K, C)]‘} 9)
2(E°)” O
o _ &S |, [ KO)WET] .
N(em(k'C)—329v%G D (k=K {2( % —a ]n(e )
N jglz{lg[(e S+ & (k C)]}} (30)
(%) (%)’
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3A [€* (k,C)+€L,]
N, (k.C)=72Q, Gkk (K, k, =k 1- R
tke) 70, Tk >|{()K orE)
5. 45 = [1_[ (k,C)+ & ]ﬂ( " n{ 1 A E (K C)]}} (31
(€)° (€°)° (€7)
, 2% (k,C)+ &2 .,
N (k,C) = 384Q, ZG Vo (ky Ky kg —K)) {nzli(l[ ((ec;r s JS” 2
+35_, €% (1—[5 (k’(c:)j éﬂ]] n(eccl+3nklf§22k3 {1+ A) 4 K, C)]}} (32)
(%) 2(%) (€°) (€°)?
where to a reasonable approximation with vanishingly small value of r:]k and N, use here

€? (k,C) = (e%)Ak,C) —122(9k +gi M3 (K, kg —K)ny

(33)
Kok,
with

Ak,C) = A(ep) (k, C)+A(ep)(k C)+A(ep) (k, C)+A(ep) (k,C)

(34)
8el 2e n(e”) e’ \ n
AEP k’c :4 GZV _ k k k Kk
(ep)( ) g‘, k,k|:( c +(EC)ZJZ(EZ—EE)+(

35
) Je-& )
. n n 1

A%y (k,C) = 128ZGkk|D(kl, k)| { X ! }

L 36
22 -F) (€= &) .
kk
1] S, € S € n.n 1
A3A k,C :288 GZV k ,k ,—k 2 -1 +a —+a + -a -« C + ki "k 37
(ep)( ) k; k,k N3( 1172 )| {2|:(€2 —-éfa) (EZ _—éfa)}nl (E ) (G—EC) (ec)z ( )
kg ko
S S, = 3n,.n._n 1
AR (k,C)=1536 > G2, N, (K, K,,K;,—K) +f +ﬂ +3 L lp,n(ef)+ 2
(ep) t%;l kk[v 1072103 | (E _E+/3 (e gﬁ) 2 [—GC)] (EC)2
2.3

(38)
In the case of superconductors the contribution of normal energy becomes least than the cooper pairs energy, so that the
cooper pairs energy is greater than the normal energy (€ N<e® ) . Therefore, the contributions of EDOS can be written in this form

N e (k) = 20 ZG {1{_433 [(c°)* +6°<"] a2 }n(ec)
2 = )"
><|:]_ [E (k,q)+ € k]:| { 2[(6 ) +6ee + 22 (k, q)]—l n, Ek } o
(E ) (E ) JZ(G )
K Sk [E (k,Q)-l- -ékz]
K, 32Q, > GZ.|D(k,,—k 15k | Sy .
(ep)( q) = kZ:kl | ( )|{( = { - ] )
A L) @
(€7) ()
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~2 ~2
N(seﬁ) (kq) :7ZQV szz:k’N3 (kl’ k21_k)|2{2(77é)4 |:[1_ [E (k’q)—'_ E+a]js+a éfa + S—a EZ
k,k' S

ra (e°)?
kp. k2

x[l [€? (k,q)+ e_a]}:ln( )+ -Elcnki {1_’_ 2[(e°)? +6€fceN2 +e? (KQ)]}} (41)
(e°)? (€7) (€7)

N (k,q) = 3840, ZG [\/4(k1,k2,k3,k)|2{17{[1[g (';‘j);’éw]}m +3S_,

kg, kz k3

){l_[-éz (k,q)+ ézﬂ]):l n(e®) +3nk1nk2nk3 {14_ 2[(€°)* +6e°€e" +E° (k,C)]}} (42)

(EC)Z Z(EC)4 (’éC)Z (’éC)Z

where

e? (k,q)=(BeM +€%)A(e,q) _122(gk + gy V3 (ky, kg, —K)ny (43)
Kok,

7 Discussion of Electron Density of States
The renormalized mode energy € q can be evaluated in this form

E —(36 +e%)? _42(gk+gk Z(gk +gk)n +32V (ky Ky —k } 42(gk+gk

1

N

3" +&°9 (44)

x> (g, + g;,)[z(s eV + )+ e i+ 243V, (K, Ky, kKON, i, + 4D(k,—k)ﬁk}
k' ki

The Eq.(44) includes with the terms of anharmonic nature and those of an impurity anharmonicity interaction nature. These all

terms shows strong temperature dependence vian, ,n,, ﬁk and ﬁk . The low (I) and high (/) temperature contributions to EDOS can
1

be described as

T —ZQ G —4&’e (Be" +€%)+elE, (3" +€°)ID(E,, € NN, e
(ep) I k.k' k k =k k1 Sq

+[(€ S)/2+2€kek (Be" +e°)S+2€/¢.” (3" +€°)*SID[(BE" +€°), € ](36 +E9%}

(45)
NG, (e T), =320, 3 G2, {D(k,~k)D(k,, k") &, &, DE,,§)N(e",e%)+D(k,~k)D(k, k)
k,k’
k' kg
x(3eN +€°)?S,D[(3EN +ec)e]} (46)
(ep)(e T), =72Q, ZG k{\/3(kl’kZ’_k)Vs(_kl'_kZ’_k')nl[S(1) = « D(E., € q)+S(l) . D(E,, q)]
k1 k2
xIQ(eN,ec)+V3(kl,k2,—k)V3(k1,kz,—k')(Se +E°)’D[BEN +€°), € 15:S,} (47)
Ny (€, T), = 38402, ZGkk{v4<k1,k2,k3, KOV, (—ky K, —ky K ), [S P €2, D(E, ;. §) +389 €2
ki, k2 k3
x D(E_,, €)IN(e",€%) +V, (ky, Ky, kg, KV, (K;, Ky Ky —kNB EN + E)?
x D[(3EN +€°),€ 15,5, S,} (48)
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(ep)(e )y =2Q szzk{[ 4 &l (Be" +€%)’+ ;g (3" +€C)]D(ék1€1)[(2ﬁ e)?

~(Bpe")I8]+ B el +4B e +€°) g € +4€ BeN +€°)?]

xD[(BEM +€°),§1BE" +€°)%} (49)
Ny (€ T), =320, ZGf,kf{D(kp—k)D(—ky—k') €4 € DEGEIIRAET) - (38 <")/8]
+D(k,,—k)D(k,,~k")BE" +€°)? s, D[(BE" +€°),E 1} (50)

N (©T) =720, TGV (ko ks (ko k[0 22, DE., 5) + 0% 2, DE.,. %)

kl k2
1 B3pe") N2 =
x[(zﬂ 5 g 14V, (Ky, Ky KOV, (kg Ky —K)BE" + E€)2D[(BEN + E°),E, ;}2
(51)
N (€.T), =384Q, ZG Vi (kg Ky kg KOV, (<K =k, =k, =K )7, [QP €2, D(E,,, €))
kl k2 k3
Yy e 1 BBeY)
(2) '
+30? 2%, D, eq)][(zﬁ =g 1+ 3V, (K., Ky, Ky KV, (K, Ky, Ky k')
x(3e" +€°)*D[BEN +€°), €187, Q,} (52)
where
[NBeN)+N(E)]=N(EN, %) (53)
The EDOS is worth promising that N (ep) (g,T) s a function of [2]  T.Matsubara, Prog. Theor. Phys. (Kyoto) 14 (1955) 351.
~9 [3] K. Brueckner, Phys. Rev. 100 (1955) 36.
Eq Wthh it depends on the anharmonic and defect [4] K M. Waston, PhyS Rev. 103 (1956) 489.
contributions. These contributions show that the strong [5] W.Riesenfeld and K. M. Waston, Phys. Rev. 104 (1956)

temperature dependence via I’lk1 Ny, ﬁk and ﬁk . The cooper 492.
L. Van Hove, Physica 22 (1956) 343.

[*))

pairs play an important role in the expressions of EDOS for

[6]
) L. [7] J. Goldstone, Proc. Roy. Soc. (London) A 239 (1957) 267.
Eigh temperatclllret.sgferc.onductors. Int’;?et c};se vicinity of Tc [8]  N.M. Hugenholtz, Physica 23 (1957) 481.
¢ superconductivity increases so tha ¢ cooper pairs [9] K. Brueckner and S. L. Gammel, Phys. Rev. 109 (1958)

dominate over normal pairs. Therefore, the contribution of
normal energy becomes small compared to the cooper pair
energy. Obviously, the evaluation of electron Green’s
function is in the heart of the problem, which can lead to
describe the EDOS and various dynamical properties of a
superconducting system.

1038.
[10] A.Klein and R. Prange, Phys. Rev. 112 (1958) 994.
[11] T.D.Lee. And C. N. Yang, Phys. Rev. 112 (1958) 1419.
[12] P. C. Martin and J. Schwinger, Phys. Rev. 115 (1959)
1342.

[13] M. Born and K. Huang, “Dynamical Theory of Crystal
Lattices” (Oxford Univ. Press, England, 1954)

[14] G. Leibfried and W. Ludwig, “Solid State Physics” Vol.
12, eds., F. Seitz and D. Turnbull (Acadmic Press, New
York, 1961) 275.

[15] A. A. Abrikosov, L. P. Gorkov and ]J. E. Dzyaloshinshi,
“Methods of Quantum Field Theory in Statistical Physics”
(Prentice Hall, London, 1963).

[16] W.E. Parry and R. E. Turner, Rep. Prog. Phys. 27 (1964)
23.

Acknowledgement One of the authors Aman Pal Singh
(Assistent Professor) Multanimal Modi College, Modinagar
(UP) India.

REFERENCES
[11  A.K. Ghatak & L.S. Kothari, “Introduction to Lattice
Dynamics” (Addision-Wesley, New York, 1972).

IJSER © 2014
http://www.ijser.org


http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014
ISSN 2229-5518

V. N. Kascheev and M. A. Krivoglaz, (1961), Fiz. Tverd.
Tela 3 1528 [English Transl: Sov. Phys. Sol. Stat. 3 (1961)

(17]

(18]
(19]

(20]

(21]
(22]
(23]

(24]
[25]

[26]
[27]

[28]

1107].

A. A. Maradudin and A. E. Fein, Phys. Rev. 128 (1962)

2589.

D. N. Zubarev, Usp. Fiz. Nauk. 71 (1960) 71 [English

Transl: Sov. Phys. Uspehki 3 (1960) 320.

V.L. Bonch-Bruevich and S.V. Tyablikov, “The Green
Function Method in Statistical Mechanics” (North
Holland, Amsterdam, 1962) 251.

S. V. Tyablikov, “Methods in the Quantum Theory of
Magnetism” (Plenum Press, New York, 1967) 354.

B. D. Indu and R. P. Gairola, Ind. |. Theor. Phys. 33
(1985) 115.

J. Callaway, “Quantum theory of the Solid State” (Academic
Press, New York, 1974).

B. D. Indu, Mod. Phys. Lett. B 6 (1992) 1665.

P. K. Sharma and Rita Bahadur, Phys. Rev. B 12 (1975)
1522.

H. Frohlich, “New Perspectives in Modern Physics” ed., R
E Marshak (John Wiley, New York, 1966).

H. Y. Fan, “Elements of Solid State Physics” (John Wiley,
New York, 1987).

D. Feinburg, S. Ciouchi and F. Pasquale de, Int. |. Mod.
Phys. B1(1990) 1317.

IJSER © 2014

[29]

[30]

[31]
[32]
[33]

[34]
[35]

[36]
[37]

[38]

[39]

http://www.ijser.org

741

S.N. Behra and S. G. Mishra, Phys. Rev. B 31 (1985)
2773.

Sanjiv Srivastava, Y. P. Raiwani, S. C. Gairola and B. D.
Indu, Physica B 223& 224 (1996) 538 and references
therein.

S. C. Gairola, C. P. Painuli and B. D. Indu, Ind. |. Pure & Appl.
Phys. 37 (1999) 110.

B. P. Bahuguna, S. C. Gairola, B. D. Indu and M. D.
Tiwari, Ind. ]. Pure & Appl. Phys. 37 (1999)142.

C P Painuli, B P Bahuguna and B D Indu, Pramana-J.
Phys. 40 (1993) 345.

K. N. Pathak, Phys. Rev. 139 (1965) A1569.

B. S. Semwal and P. K. Sharma, Prog. Theor. Phys. 51
(1974)6309.

B. D. Indu, In. ]. Mod. Phys. B 4 (1990) 1379.

D. N. Sahu and P. K. Sharma, Phys. Rev. B 28 (1983)
3200.

A. A. Maradudin, Solid State Physics, Vols. 18 and 19,
eds., F. Seitz and D. Turnbull (Academic Press, New
York, 1966) 273 and 1.

R. W. H. Stevenson, “Phonons in Perfect Lattice and
Lattices with Point Imperfections” (Oliver and Boyd,
London, 1966).


http://www.ijser.org/

	4    Electron Green’s function
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